Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Selective reduction of acetic acid to ethanol over novel Qi2In/Al2O3 catalyst

Identifieur interne : 000567 ( Main/Repository ); précédent : 000566; suivant : 000568

Selective reduction of acetic acid to ethanol over novel Qi2In/Al2O3 catalyst

Auteurs : RBID : Pascal:13-0283343

Descripteurs français

English descriptors

Abstract

Volatile fatty acids (VFAs) can be produced efficiently by simple thermochemical or biological biomass degradation. For the processing of these organic acids in hydrogen atmosphere, the consecutive reactions of acetic acid (AA) hydroconversion were studied in details looking for conditions of selective ethanol production over a novel and advantageous bimetallic composite applying indium as co-catalyst. The reactions were investigated in vapor phase at 240-380°C, 7-21 bar hydrogen and 0.5-3.5 bar acetic acid partial pressures in a fixed bed flow-through reactor using supported copper catalysts. In2O3 admission can significantly increase AA hydroconversion activity of copper catalysts supported on various oxides and the yield of the produced ethanol. Efficient hydrogenating catalysts, containing finely dispersed metal particles were obtained by in situ reduction with H2 at 450 C. In the catalysts modified with In2O3 additive, formation of an intermetallic compound (Cu2In) was strikingly observed resulting in a different, more advantageous catalytic behavior as of pure copper particles supported on different oxide supports. On comparing a commercial, conventionally used catalysts (Adkins: 72 wt% CuCr2O4 + 28 wt% CuO) with the bimetallic alumina supported composite (Cu2In/Al2O3) the new catalyst proved to be much more active and selective for producing ethanol. A schematic representation of reactions involved in the hydroconversion of acetic acid was explored and verified. The activity dependence on the reactant partial pressures denotes rate-controlling surface reaction according to Langmuir-Hinshelwood mechanism.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0283343

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Selective reduction of acetic acid to ethanol over novel Qi
<sub>2</sub>
In/Al
<sub>2</sub>
O
<sub>3</sub>
catalyst</title>
<author>
<name sortKey="Onyesty K, Gy Rgy" uniqKey="Onyesty K G">Gy Rgy Onyesty K</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri u. 59-67</s1>
<s2>Budapest 1025</s2>
<s3>HUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Hongrie</country>
<placeName>
<settlement type="city">Budapest</settlement>
<region nuts="2">Hongrie centrale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Harnos, Szabolcs" uniqKey="Harnos S">Szabolcs Harnos</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri u. 59-67</s1>
<s2>Budapest 1025</s2>
<s3>HUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Hongrie</country>
<placeName>
<settlement type="city">Budapest</settlement>
<region nuts="2">Hongrie centrale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Klebert, Szilvia" uniqKey="Klebert S">Szilvia Klebert</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri u. 59-67</s1>
<s2>Budapest 1025</s2>
<s3>HUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Hongrie</country>
<placeName>
<settlement type="city">Budapest</settlement>
<region nuts="2">Hongrie centrale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey=" Tolcov, Magdalena" uniqKey=" Tolcov M">Magdalena Tolcov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Organic Technology, Slovak University of Technology, Radlinského 9</s1>
<s2>Bratislava 81237</s2>
<s3>SVK</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Slovaquie</country>
<wicri:noRegion>Bratislava 81237</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kaszonyi, Alexander" uniqKey="Kaszonyi A">Alexander Kaszonyi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Organic Technology, Slovak University of Technology, Radlinského 9</s1>
<s2>Bratislava 81237</s2>
<s3>SVK</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Slovaquie</country>
<wicri:noRegion>Bratislava 81237</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kall, Denes" uniqKey="Kall D">Dénes Kall</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri u. 59-67</s1>
<s2>Budapest 1025</s2>
<s3>HUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Hongrie</country>
<placeName>
<settlement type="city">Budapest</settlement>
<region nuts="2">Hongrie centrale</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0283343</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0283343 INIST</idno>
<idno type="RBID">Pascal:13-0283343</idno>
<idno type="wicri:Area/Main/Corpus">000881</idno>
<idno type="wicri:Area/Main/Repository">000567</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0926-860X</idno>
<title level="j" type="abbreviated">Appl. catal., A Gen. : (Print)</title>
<title level="j" type="main">Applied catalysis. A, General : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetate</term>
<term>Acetic acid</term>
<term>Alumina</term>
<term>Aluminium oxide</term>
<term>Catalyst</term>
<term>Chemical reduction</term>
<term>Copper</term>
<term>Ethanol</term>
<term>Heterogeneous catalysis</term>
<term>Indium</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Réduction chimique</term>
<term>Acide acétique</term>
<term>Ethanol</term>
<term>Alumine</term>
<term>Oxyde d'aluminium</term>
<term>Catalyseur</term>
<term>Cuivre</term>
<term>Indium</term>
<term>Acétate</term>
<term>Catalyse hétérogène</term>
<term>Al2O3</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Volatile fatty acids (VFAs) can be produced efficiently by simple thermochemical or biological biomass degradation. For the processing of these organic acids in hydrogen atmosphere, the consecutive reactions of acetic acid (AA) hydroconversion were studied in details looking for conditions of selective ethanol production over a novel and advantageous bimetallic composite applying indium as co-catalyst. The reactions were investigated in vapor phase at 240-380°C, 7-21 bar hydrogen and 0.5-3.5 bar acetic acid partial pressures in a fixed bed flow-through reactor using supported copper catalysts. In
<sub>2</sub>
O
<sub>3</sub>
admission can significantly increase AA hydroconversion activity of copper catalysts supported on various oxides and the yield of the produced ethanol. Efficient hydrogenating catalysts, containing finely dispersed metal particles were obtained by in situ reduction with H
<sub>2</sub>
at 450 C. In the catalysts modified with In
<sub>2</sub>
O
<sub>3</sub>
additive, formation of an intermetallic compound (Cu
<sub>2</sub>
In) was strikingly observed resulting in a different, more advantageous catalytic behavior as of pure copper particles supported on different oxide supports. On comparing a commercial, conventionally used catalysts (Adkins: 72 wt% CuCr
<sub>2</sub>
O
<sub>4 </sub>
+ 28 wt% CuO) with the bimetallic alumina supported composite (Cu
<sub>2</sub>
In/Al
<sub>2</sub>
O
<sub>3</sub>
) the new catalyst proved to be much more active and selective for producing ethanol. A schematic representation of reactions involved in the hydroconversion of acetic acid was explored and verified. The activity dependence on the reactant partial pressures denotes rate-controlling surface reaction according to Langmuir-Hinshelwood mechanism.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0926-860X</s0>
</fA01>
<fA03 i2="1">
<s0>Appl. catal., A Gen. : (Print)</s0>
</fA03>
<fA05>
<s2>464-465</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Selective reduction of acetic acid to ethanol over novel Qi
<sub>2</sub>
In/Al
<sub>2</sub>
O
<sub>3</sub>
catalyst</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ONYESTYÁK (György)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HARNOS (Szabolcs)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KLEBERT (Szilvia)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ŠTOLCOVÁ (Magdalena)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KASZONYI (Alexander)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>KALLÓ (Dénes)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri u. 59-67</s1>
<s2>Budapest 1025</s2>
<s3>HUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Organic Technology, Slovak University of Technology, Radlinského 9</s1>
<s2>Bratislava 81237</s2>
<s3>SVK</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>313-321</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18840A</s2>
<s5>354000503695120370</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>25 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0283343</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied catalysis. A, General : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Volatile fatty acids (VFAs) can be produced efficiently by simple thermochemical or biological biomass degradation. For the processing of these organic acids in hydrogen atmosphere, the consecutive reactions of acetic acid (AA) hydroconversion were studied in details looking for conditions of selective ethanol production over a novel and advantageous bimetallic composite applying indium as co-catalyst. The reactions were investigated in vapor phase at 240-380°C, 7-21 bar hydrogen and 0.5-3.5 bar acetic acid partial pressures in a fixed bed flow-through reactor using supported copper catalysts. In
<sub>2</sub>
O
<sub>3</sub>
admission can significantly increase AA hydroconversion activity of copper catalysts supported on various oxides and the yield of the produced ethanol. Efficient hydrogenating catalysts, containing finely dispersed metal particles were obtained by in situ reduction with H
<sub>2</sub>
at 450 C. In the catalysts modified with In
<sub>2</sub>
O
<sub>3</sub>
additive, formation of an intermetallic compound (Cu
<sub>2</sub>
In) was strikingly observed resulting in a different, more advantageous catalytic behavior as of pure copper particles supported on different oxide supports. On comparing a commercial, conventionally used catalysts (Adkins: 72 wt% CuCr
<sub>2</sub>
O
<sub>4 </sub>
+ 28 wt% CuO) with the bimetallic alumina supported composite (Cu
<sub>2</sub>
In/Al
<sub>2</sub>
O
<sub>3</sub>
) the new catalyst proved to be much more active and selective for producing ethanol. A schematic representation of reactions involved in the hydroconversion of acetic acid was explored and verified. The activity dependence on the reactant partial pressures denotes rate-controlling surface reaction according to Langmuir-Hinshelwood mechanism.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01A03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Réduction chimique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Chemical reduction</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Reducción química</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Acide acétique</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Acetic acid</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Acético ácido</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Ethanol</s0>
<s2>NK</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Ethanol</s0>
<s2>NK</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Etanol</s0>
<s2>NK</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Alumine</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Alumina</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Alúmina</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Oxyde d'aluminium</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Aluminium oxide</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Aluminio óxido</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Catalyseur</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Catalyst</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Catalizador</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Cobre</s0>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Indio</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Acétate</s0>
<s2>NA</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Acetate</s0>
<s2>NA</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Acetato</s0>
<s2>NA</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Catalyse hétérogène</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Heterogeneous catalysis</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Catálisis heterogénea</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Al2O3</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Acide carboxylique</s0>
<s5>11</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Carboxylic acid</s0>
<s5>11</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Acido carboxílico</s0>
<s5>11</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Alcanol</s0>
<s5>12</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Alkanol</s0>
<s5>12</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Alcanol</s0>
<s5>12</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>13</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>13</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>13</s5>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Métal transition</s0>
<s2>NC</s2>
<s5>14</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Transition metal</s0>
<s2>NC</s2>
<s5>14</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Metal transición</s0>
<s2>NC</s2>
<s5>14</s5>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Alcool</s0>
<s5>15</s5>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Alcohol</s0>
<s5>15</s5>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Alcohol</s0>
<s5>15</s5>
</fC07>
<fN21>
<s1>266</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000567 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000567 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0283343
   |texte=   Selective reduction of acetic acid to ethanol over novel Qi2In/Al2O3 catalyst
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024